Abstract

We explore a method to measure the temperature at the surface of “hot Jupiter” type exoplanets by relative photometry in the infrared at around 10 μm in N spectral band. The method is described and validated by numerical simulations. Thermal radiation from an exoplanet and its parent star are analysed. Geometrical configurations of extra-solar planet rotating synchronously around parent star are explored for a feasibility study of the detection. A Jupiter size planet in orbit at 0.025 astronomical unit from Sun-like parent star should have a harmonic signature of up to 0.2% in amplitude with a period of the planets orbital duration. Such a signature is difficult to detect when making absolute measurements, but by differential methods of analyses, and using a radiative transfer model to take into account background sky contribution of the Earth’s atmosphere, this relative accuracy can be reached. Some results of simulations of observation are also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.