Abstract

This article compares the brightness and uniformity perception of virtual corridor displayed on computer screens and under different surrounding conditions, between two groups of respondents. The computer simulations of 10 lighting scenarios in the empty corridor, diverse in terms of luminance distribution and lighting power density, were developed. The visual assessment of the lighting effects was carried out on the basis of surveys. The respondents assessed the brightness and uniformity of each plane and entire corridor for each scenario, using semantic differential scaling. Each person from the first group individually made their evaluations on the same computer screen placed in the experimental box. Each person from the second group made the assessments on different computer screens, and all respondents from this group made the evaluations in the computer room at the same time. A high convergence of the results between the groups was found in the assessments of brightness and uniformity perception for consecutive lighting situations. In 93.75% of cases, the same perception in brightness and uniformity between the group means was achieved. A high convergence of the results between the groups in the assessment of brightness and uniformity perception for the same lighting situations was also demonstrated.

Highlights

  • A selection of any interior lighting solution is based on a number of lighting and non-lighting criteria, both objective and subjective

  • The use of various luminous intensity distributions and layouts of luminaires is an effective way of creating the luminance distribution in interior lighting

  • Higher levels of mean illuminances on the ceiling and walls led to a reduction in utilization factor and, to an increase in lighting power density in the analyzed corridor

Read more

Summary

Introduction

A selection of any interior lighting solution is based on a number of lighting and non-lighting criteria, both objective and subjective. The objective assessment of the interior lighting is usually based on checking if it meets the requirements for photometric parameters, e.g., [1,2] The objective assessment of non-lighting parameters may concern: Energy efficiency, e.g., [3,4], environmental impact, e.g., [5,6], or lighting cost, e.g., [7,8]. The assessment of lighting effects is carried out on the basis of images of the illuminated interiors: photos of real interiors [21] or visualizations of virtual interiors [22]. Images of the illuminated interiors can be presented on projection screens [23] or display screens [24]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call