Abstract

We performed a detailed study of the evolution of the star formation rate (SFR) and stellar mass of the brightest group galaxies (BGGs) and their relative contribution to the total baryon budget within $R_{200}$ ($f^{BGG}_{b,200}$). The sample comprises 407 BGGs selected from X-ray galaxy groups ($M_{200}=10^{12.8}-10^{14} \;M_{\odot}$) out to $z\sim1.3$ identified in the COSMOS, XMM-LSS, and AEGIS fields. We find that BGGs constitute two distinct populations of quiescent and star-forming galaxies and their mean SFR is $\sim2$ dex higher than the median SFR at $ z<1.3 $. Both the mean and the median SFRs decline with time by $>2$ dex. The mean (median) of stellar mass of BGGs has grown by $0.3$ dex since $z=1.3$ to the present day. We show that up to $\sim45\% $ of the stellar mass growth in a star-forming BGG can be due to its star-formation activity. With respect to $f^{BGG}_{b,200}$, we find it to increase with decreasing redshift by $\sim0.35$ dex while decreasing with halo mass in a redshift dependent manner. We show that the slope of the relation between $f^{BGG}_{b,200}$ and halo mass increases negatively with decreasing redshift. This trend is driven by an insufficient star-formation in BGGs, compared to the halo growth rate. We separately show the BGGs with the 20\% highest $f^{BGG}_{b,200}$ are generally non-star-forming galaxies and grow in mass by processes not related to star formation (e.g., dry mergers and tidal striping). We present the $ M_\star-M_h $ and $ M_\star/M_h-M_h $ relations and compare them with semi-analytic model predictions and a number of results from the literature. We quantify the intrinsic scatter in stellar mass of BGGs at fixed halo mass ($\sigma_{log M_{\star}}$) and find that $\sigma_{log M_{\star}}$ increases from 0.3 dex at $ z\sim0.2 $ to 0.5 dex at $ z\sim1.0 $ due to the bimodal distribution of stellar mass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.