Abstract

Abstract On 2017 September 6 and 10, the strongest X9.3 and X8.2 flares of the decade occurred in the active region NOAA Active Region 12673. During these flares, the Sun Watcher with Active Pixels and Image Processing (SWAP) telescope on board the Project for Onboard Autonomy 2 (PROBA2) satellite registered the unusual alternate brightening and darkening of the western corona at the heliocentric distances ≈1.2–1.7 R ☉. The X9.3 flare on 2017 September 6 was accompanied by coronal brightening up to 30%–45% at distances ≈1.35–1.7 R ☉. Numerical simulations showed that this brightening might be produced by resonant scattering of the flare radiation by the Fe ix–Fe xi ions in the coronal plasma at the temperature T ∼ 0.8–1 MK, and the densities seriously reduced in comparison with the typical values for the quiet background corona probably moving outward with velocities of 30–40 km s−1. At the maximum of the flare and one hour later, two coronal mass ejections (CMEs) originated, which dimmed the coronal emission in the SWAP 174 Å passband above the western limb by 20%–30%. The X8.2 flare on September 10 was accompanied by a CME, which rose up and progressively dimmed the western part of the corona up to 60%. An hour later the darkening, produced by a global rearrangement of the magnetic field structure and an evacuation of a significant part of the coronal plasma, extended over the complete western limb. A differential emission measure (DEM) analysis showed a decrease in the electron density of the background plasma with T ∼ 1–2 MK at distances 1.24–1.33 R ☉ by 2–3.5 times after the CME. At the same time, an additional DEM peak at T ≈ 0.8 MK appeared, which may be associated with an additional emission in the SWAP passband produced by the flare radiation resonantly scattered by the coronal plasma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.