Abstract

Double-layer and triple-layer organic light-emitting diodes (OLEDs) were fabricated using a novel star-shaped hexafluorenylbenzene organic material, 1,2,3,4,5,6-hexakis(9,9-diethyl-9H-fluoren-2-yl)benzene (HKEthFLYPh) as an energy transfer layer, N, N′-bis-(1-naphthyl)- N, N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) as a hole-transport layer (HTL) and blue emissive layer (EML), and tris(8-hydroxyquinoline)aluminum (Alq 3) as an electron-transport layer (ETL) and green light-emitting layer. Bright white light was obtained with a triple-layer device structure of indium-tin-oxide (ITO)/NPB (40 nm)/HKEthFLYPh (10 nm)/Alq 3 (50 nm)/Mg:Ag (200 nm). A maximum luminance of 8523 cd·m −2 at 15 V and a power efficiency of 1.0 lm·W −1 at 5.5 V were achieved. The Commissions Internationale de L′Eclairage (CIE) coordinates of the device were (0.29, 0.34) at 9 V, which located in white light region. With increasing film thickness of HKEthFLYPh, light emission intensity from NPB increased compared to that of Alq 3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call