Abstract

Lead-free zero-dimensional (0D) perovskite nanocrystals (NCs) with isolated octahedral structures have attracted considerable attention due to their unique photoelectric properties, such as highly efficient emissions with broadband features. A series of phosphors composed of Sb3+-doped 0D perovskite crystals Cs3ZnCl5 with wavelength-tunable emission spectra have been obtained using a facile recrystallization method at room temperature in air. By controlling the doping concentration of Sb3+ in Cs3ZnCl5 lattice, bright emissions from red to orange have been achieved under excitation at 320 nm due to the expansion of the crystal lattice, and the emission excited at 275 nm is bluish-white, spanning the full visible region. Inductively coupled plasma emission spectrometry (ICP) demonstrates the Sb3+ substitutes for Zn2+ rather than Cs+ due to the similar charges and ionic radii. The luminescence performance of phosphor Cs3ZnCl5:Sb3+ can be improved obviously by replacing 3 mol% of Cs+ with Rb+ or K+ due to the further distortion of the crystal lattice. The present approach allows the synthesis of large-scale emissive lead-free 0D perovskites activated by Sb3+ with tunable luminescence color.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.