Abstract
All-inorganic lead halide perovskite quantum dots (CsPbBr3 QDs) are attracting significant research interests because of their highly efficient light-emitting performance combined with tunable emission wavelength facilely realized by ion exchange. However, blue emission from perovskite QDs with strong quantum confinement is rarely reported and suffers from lower luminescence efficiency. Here we report blue-emitting ultrasmall (∼3 nm) CsPbBr3 QDs with photoluminescence (PL) quantum yield as high as 68%. Using time-resolved and steady-state PL spectroscopy, we elucidate the mechanism of the highly efficient PL as recombination of excitons localized in radiative band tail states. Through analyzing the spectral-dependent PL lifetime and the PL line shape, we obtain a large band tail width of ∼80 meV and a high density of state of ∼1020 cm-3. The relaxation of photocarriers into the radiative tail states suppresses the capture by nonradiative centers. Our results provide solid evidence for the positive role of band tail states in the optical properties of lead halide perovskites, which can be further tailored for high-performance optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.