Abstract

There is controversy in the literature regarding whether distant, massive, and dusty starbursts selected at (sub)millimeter wavelengths can trace galaxy overdensities. We thus performed the first systematic search for distant protoclusters around a homogeneously selected sample of 12 spectroscopically confirmed submillimeter galaxies (SMGs) at z ∼ 1.2 − 5.3, which we selected from the GOODS-N field. We applied the well-established Poisson probability method (PPM) to search for megaparsec-scale overdensities around these SMGs, using three different photometric redshift catalogs. We robustly detect galaxy overdensities for 11 out of the 12 SMGs (i.e., 92%±8%), distributed over eight large-scale protoclusters. We confirm all three previously discovered protoclusters, and we detect five new ones around the SMGs SMM J123634 (z = 1.225), ID.19 (z = 2.047), SMM J123607 (z = 2.487), SMM J123606 (z = 2.505), and GN10 (z = 5.303). A wavelet-based analysis of the protocluster fields shows that the SMGs are located in protocluster cores with a complex morphology (compact, filamentary, or clumpy) and an average size of ∼(0.4 − 1) Mpc. By comparing the PPM results obtained using the three redshift catalogs independently, each of which trace different galaxy populations and redshift ranges, we speculate that we are possibly witnessing a transitioning phase at z ≳ 4 for the galaxy population of protoclusters. While z ≲ 4 protoclusters appear to be populated by dusty galaxies, those at the highest redshifts, z ∼ 5, are detected as overdensities of Lyman α emitters or Lyman break galaxies. Further investigation with larger samples is required to reach a definitive conclusion. We also find a good correlation between the molecular (H2) gas mass of the SMGs and the significance of the associated overdensity. To explain the overall phenomenology, we suggest that galaxy interactions in dense environments likely triggered the starburst and gas-rich phase of the SMGs. Altogether, our findings support the scenario that SMGs are excellent tracers of distant protoclusters. The ones presented in this work are excellent targets for the James Webb Space Telescope. Similarly, future surveys with forthcoming facilities (e.g., Euclid and LSST) can be tuned to detect even larger samples of distant protoclusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.