Abstract
We report on the discovery of three bright, strongly lensed objects behind Abell 1703 and CL0024+16 from a dropout search over 25 arcmin2 of deep NICMOS data, with deep ACS optical coverage. They are undetected in the deep ACS images below 8500 Å and have clear detections in the J and H bands. Fits to the ACS, NICMOS, and IRAC data yield robust photometric redshifts in the range z ∼ 6–7 and largely rule out the possibility that they are low-redshift interlopers. All three objects are extended, and resolved into a pair of bright knots. The bright i-band dropout in Abell 1703 has an H-band AB magnitude of 23.9, which makes it one of the brightest known galaxy candidates at z > 5.5. Our model fits suggest a young, massive galaxy only ∼60 million years old with a mass of ∼1010 M☉. The dropout galaxy candidates behind CL0024+16 are separated by 25 (∼2 kpc in the source plane), and have H-band AB magnitudes of 25.0 and 25.6. Lensing models of CL0024+16 suggest that the objects have comparable intrinsic magnitudes of AB ∼27.3, approximately one magnitude fainter than L* at z ∼ 6.5. Their similar redshifts, spectral energy distribution, and luminosities, coupled with their very close proximity on the sky, suggest that they are spatially associated, and plausibly are physically bound. Combining this sample with two previously reported, similarly magnified galaxy candidates at z ∼ 6–8, we find that complex systems with dual nuclei may be a common feature of high-redshift galaxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.