Abstract

Spatially discontinuous high‐amplitude seismic reflections were encountered in seismic data acquired in the early 1970s in northeast Louisiana and southwest Arkansas. Large acoustic impedance contrasts are known to result from gaseous hydrocarbon accumulations. However, amplitude anomalies may also result from large density and velocity contrasts which are geologically unrelated to hydrocarbon entrapment. A well drilled on the northeast Louisiana amplitude anomaly encountered 300 ft of rhyolite at a depth of 6170 ft. Subsequent gravity and total field magnetic profiles across the feature revealed the presence of 0.2 mgal and 17 gamma anomalies, respectively. The measured magnetic susceptibility of the rhyolite was 0.0035 emu and the measured density contrast was [Formula: see text]. Model studies based on the seismically determined areal extent of the anomaly and the measured thickness of rhyolite accounted for the observed gravity and magnetic anomalies. The southwest Arkansas amplitude anomaly was a sheet‐like reflection which terminated to the north and west within the survey area. Two north‐south gravity profiles exhibited a negative character over the sheet‐like reflector but did not exhibit a clear spatial correlation with the north limit of the seismic anomaly. Two north‐south magnetic profiles exhibited tenuous 4 gamma anomalies which appeared to be spatially correlated with the interpreted north edge of the seismic anomaly. A subsequent wildcat well encountered no igneous material but did penetrate 200 ft of salt at about 7500 ft. Reassessment of the gravity and magnetic data indicated that this seismic amplitude anomaly is not attributable to an intrasedimentary igneous source; it suggested a salt‐related 0.2 to 0.3 mgal minimum coextensive with the observed seismic amplitude anomaly. Present amplitude analysis technology would treat these seismic data with suspicion. However, gravity and magnetic data acquisition can provide a relatively inexpensive means for evaluation and verification of amplitude anomalies and thus should be an adjunct for land seismic exploration utilizing amplitude analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call