Abstract
We derive exact analytical expressions for the spatial Fourier spectrum of the fundamental bright soliton solution for the 1+1-dimensional nonlinear Schrödinger equation. Similar to a Gaussian profile, the Fourier transform for the hyperbolic secant shape is also shape-preserving. Interestingly, this associated hyperbolic secant Fourier spectrum can be represented by a convergent infinite series, which can be achieved using Mittag–Leffler’s expansion theorem. Conversely, given the expression of the series of the spectrum, we recover its closed form by employing Cauchy’s residue theorem for summation. We further confirm that the fundamental soliton indeed satisfies essential characteristics such as Parseval’s relation and the stretch-bandwidth reciprocity relationship. The fundamental bright soliton finds rich applications in nonlinear fiber optics and optical telecommunication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.