Abstract

Photoactivatable probes can switch fluorescence on from a weak or nonemission state to improve the sensitivity of the sensing system. In this work, we successfully constructed three highly emissive photoactivatable probes, 2-DP, 1-2-DP and 2-2-DP, for Cu2+ detection. Under UV irradiation, the photoluminescence quantum yields of 2-DP, 1-2-DP and 2-2-DP display approximately 52.4-, 11.5- and 49.2-fold enhancement, respectively. Cu2+ selectively quenches the bright photoactivated fluorescence, resulting in an approximately 38-fold fluorescence reduction. The highly selective fluorescence response to Cu2+ yields an excellent low detection limit of 5.8 nM. Moreover, the photoactivatable probes were successfully applied for Cu2+ determination in tap water and tea samples with recovery ranges of 95%–105% and 97%–106%, respectively. This work provides a more sensitive and efficient methodology for Cu2+ detection in heavy metal pollution and food safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call