Abstract
Under the Dirichlet boundary conditions, a family of bright quadratic solitons exists in the regime where the second harmonic can be regarded as the refractive index of the fundamental wave with an oscillatory nonlocal response. By simplifying the governing equations into the Snyder-Mitchell mode, the approximate analytical solutions are obtained. Taking them as the initial guess and using a numerical code, we found two branches of bright solitons, of which the beam width increases (branch I) and decreases (branch II) with the increase of the sample size, respectively. If the nonlocality is fixed and the sample size is varied, the soliton width varies piecewise and approximately periodically. In each period, solitons only exist in a small range of sample size. Single-hump fundamental wave solitons with the same beam width in narrower samples can be, if the second harmonics are connected smoothly, jointed to be a multihump soliton in a wider sample whose size is the sum of those for the narrower ones. The dynamical simulation shows that the found solitons are unstable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.