Abstract

Radicals can feature theoretically 100% light utilization owing to their nonelectron spin-forbidden transition and represent the most advanced luminescent materials at present. 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) acts as a typically stable radical with very broad applications. However, their luminescent properties have not been discovered to date. In the present work, we observed the bright electrochemiluminescence (ECL) emission of TEMPO with a higher efficiency (72.3%) via the electrochemistry and coreactant strategies for the first time. Moreover, the radical-based ECL achieved high detection toward boron acid with a lower limit of detection (LOD) of 1.9 nM. This study offers a new approach to generate emissions for some unconventional luminophores and makes a major breakthrough in the field of new luminescent materials as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call