Abstract

Addressing the interactions between optical antennas and ensembles of emitters is particularly challenging. Charge transfer and Coulomb interactions complicate the understanding of the carrier dynamics coupled by antennas. Here, we show how Au antennas enhance the luminescence of CdSe/CdS quantum dot assemblies through carrier dynamics control within the framework of the local Kirchhoff law. The Au antennas inject hot electrons into quantum dot assemblies via plasmon-induced hot electron transfer that increases the carrier concentration. Also, the localized surface plasmon resonances of Au antennas favorably tilt the balance between nonradiative Auger processes and radiative recombination in the CdSe core. Eventually, a high bright (125,091.6 cd/m2) deep-red quantum dot light-emitting diode is obtained by combining with Au antennas. Our findings suggest a new understanding of light emission of assembled emitters coupled by antennas, which is of essential interest for the description of light-matter interaction in advanced optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call