Abstract

There is an urgent demand to improve the efficiency and the color purity of the environment-friendly quantum dots (QDs), which can be used in wide color gamut (WCG) displays. In this study, we optimized the reaction conditions for the InP core synthesis and the ZnSe/ZnS multishell growth on the core. As a result, remarkable improvements were achieved in the photoluminescence quantum yield (PL QY, 95%) and the full width at half-maximum (fwhm, 36 nm), with perfectly matched wavelength (528 nm) for the green color in WCG displays. Injection of the phosphorus precursor at a mild temperature during the InP core synthesis reduced the size distribution of the core to 12%, and the shell growth performed at a high temperature significantly enhanced the crystallinity of the thick passivating layer. We also investigated the photophysical properties, particularly the energy trap distributions and trap state emissions of the InP-based QDs with different shell structures. The time-resolved and temperature-dependent PL...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call