Abstract

Perovskite nanocrystals are exceptional candidates for light-emitting diodes (LEDs). However, they are unstable in the solid film and tend to degrade back to the bulk phase, which undermines their potential for LEDs. Here we demonstrate that perovskite nanocrystals stabilized in metal–organic framework (MOF) thin films make bright and stable LEDs. The perovskite nanocrystals in MOF thin films can maintain the photoluminescence and electroluminescence against continuous ultraviolet irradiation, heat and electrical stress. As revealed by optical and X-ray spectroscopy, the strong emission originates from localized carrier recombination. Bright LEDs made from perovskite-MOF nanocrystals are demonstrated with a maximum external quantum efficiency of over 15% and a high brightness of over 105 cd m−2 after the device reaches stabilization. During LED operation, the nanocrystals can be well preserved, free of ion migration or crystal merging through protection by the MOF matrix, leading to a stable performance over 50 hours. The use of metal–organic frameworks helps protect perovskite nanocrystals, resulting in bright, stable light-emitting diodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.