Abstract

Briggs-Rauscher (BR) oscillatory reaction is a chemical system very sensitive to different analyte addition. Changes in oscillatory dynamics, by analyte addition, could be successfully used for the determination of analyte concentration, as well as for its antioxidative/antiradical activity assessment. In this work, the BR reaction is used as a system detector for distinguishing solid unsolvable materials, such as phosphate tungsten bronze (PWB) and phosphate molybdenum bronze (PMoB), obtained by thermal treatment. The addition of different masses of PWB in BR reaction decreases its oscillation time, while the addition of different masses of PMoB had no effects on the BR oscillation time. Additionally, the BR oscillation time is the linear function of added PWB mass. The mechanism of bronzes action is investigated by using pH and electric conductivity measurements, as well as inductively coupled plasma and the cyclic voltammetry measurements, and it can be ascribed to PWB better catalytic activity then PMoB, under BR reaction condition. This work extends the practical aspect of the BR reaction for testing solid (insoluble) materials, and opening the possibility of using oscillatory reactions in material science and catalysis, in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.