Abstract

Neuromyelitis Optica spectrum disorder (NMOSD) is an autoimmune disease characterized by anti-aquaporin-4 (AQP4) auto-antibodies. The discovery of antibodies AQP4 and myelin oligodendrocyte glycoprotein (MOG) has expanded our understanding of the pathogenesis of neuromyelitis optica. However, the molecular mechanisms underlying the disease, particularly AQP4-associated optic neuritis (AQP4-ON), remain to be fully elucidated. In this study, we utilized Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the transcriptomic profiles of peripheral blood samples from patients with AQP4-ON and MOG-positive optic neuritis (MOG-ON), compared to healthy controls. WGCNA revealed a brown module (ME brown) strongly associated with AQP4-ON, which correlated positively with post-onset visual acuity decline. A total of 132 critical genes were identified, mainly involved in histone modification and microtubule dynamics. Notably, genes HDAC4, HDAC7, KDM6A, and KDM5C demonstrated high AUC values in ROC analysis, indicating their potential as biomarkers for AQP4-ON. Our findings provide novel insights into the molecular signature of AQP4-ON and highlight the potential of systems biology approaches in identifying biomarkers for NMOSD. The identified histone modification genes warrant further investigation for their role in disease pathogenesis and as therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.