Abstract

Aging is associated with a decreased capacity for dentate gyrus (DG) granule cell depolarization as well as reduced perforant path activation. Although it is well established that the maintenance of DG long-term potentiation (LTP) over days is impaired in aged, as compared to young animals, the threshold for inducing this LTP has never been investigated in aged, awake animals. In addition, although exposure to novelty prior to theta-burst stimulation (TBS) increases both the induction and longevity of DG LTP in adult rats, the effects of exposure to novelty on LTP in aged rats have never been investigated. Here, we report that although TBS delivered in the home cage induces robust and long-lasting DG LTP in young rats, TBS fails to induce DG LTP in aged rats. Interestingly, delivery of TBS to aged rats exploring novel environments induces robust and long-lasting LTP, with the induction, but not the longevity, of this LTP being similar in magnitude to that observed in young rats delivered TBS in the home cage. These results indicate that although TBS-induced DG LTP is impaired in aged, as compared to young rats, TBS during exploration of novel environments is sufficient to rescue age-related deficits in DG LTP. We discuss these observations in the context of previous findings suggesting that the facilitation of LTP by exposure to novel environments results as a consequence of reduced network inhibition in the DG and we suggest that, in spite of age-related changes in the DG, this capacity persists in aged rats and represents a nondietary and nonpharmacological way to facilitate DG LTP during aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call