Abstract

Many shallow coastal systems experience diel fluctuations in dissolved oxygen (DO) and pH that can intensify throughout the summer season and expose estuarine organisms to repeated episodes of coastal hypoxia and acidification. In temperate regions, larval release of the economically important blue crab Callinectes sapidus occurs in the summer, and while the earliest stage (zoea I) larvae are susceptible to persistent low DO and low pH conditions, their sensitivity to diel fluctuations is unknown. Here, a series of short-term (≤96 h) experiments were conducted to investigate the survival of C. sapidus zoea I larvae exposed to a range of diel cycling hypoxic and acidified conditions and durations. Two experiments comparing a diel cycling DO/pH treatment (fluctuating from ∼30% air saturation to ∼103% averaging ∼66%/and from pH ∼7.26 to ∼7.80 averaging ∼7.53) to a static low DO/pH treatment (∼43%/∼7.35), a static moderate DO/pH treatment (∼68%/∼7.59), and a static control treatment (∼106%/∼7.94) indicated that survival in the diel cycling treatment was significantly lower than the moderate treatment (p < 0.05) by 75 and 48% over 96 and 48 h, respectively, despite comparable mean experimental DO/pH values. Three other experiments aimed at identifying the effective minimum duration of low DO/low pH to significantly depress larval survival under diel cycling conditions revealed that 8 h of low DO/low pH (∼28%/∼7.43) over a 24-h diel cycle consistently decreased survival (p < 0.05) relative to control conditions by at least 55% regardless of experimental duration (72-, 48-, and 24-h experiments). An increase in DO beyond saturation to supersaturation (160%) and pH beyond normocapnic to highly basified (8.34) conditions during the day phase of the diel cycle did not improve survival of larvae exposed to nocturnal hypoxia and acidification. Collectively, these experiments demonstrate that diel cycling does not provide newly hatched C. sapidus larvae a temporal refuge capable of ameliorating low DO/pH stress, but rather is more lethal than chronic exposure to comparable average DO/pH conditions. Given that larvae exposed to a single nocturnal episode of moderate hypoxia and acidification experience significantly reduced survival, such occurrences may depress larval recruitment.

Highlights

  • Covarying, diel fluctuations of dissolved oxygen (DO) and pH commonly occur across shallow estuaries worldwide

  • Field studies with oysters revealed significant negative differences in growth and immunocompromisation controlled by diel cycling hypoxia/acidification frequency and magnitude, respectively (Breitburg et al, 2015), and in situ measures of heartbeat rates indicated that the metabolic activity of bay scallops increases and becomes more dynamic under diel cycling hypoxia (Gurr et al, 2018)

  • The average pH in the diel cycling treatment of experiment 1 had a slightly lower average pH value (7.50 ± 0.05) than the moderate treatment (7.56 ± 0.02) but were still comparable given the range of average pH conditions among the other static treatments (7.93 and 7.31), and the average pH in experiment 2 was statistically indistinguishable from the moderate treatment, as intended

Read more

Summary

Introduction

Diel fluctuations of dissolved oxygen (DO) and pH commonly occur across shallow estuaries worldwide. Driven by the oscillating dominance of photosynthesis and respiration over a diel cycle, shallow productive coastal systems experience naturally dynamic DO, pH, and CO2 concentrations (Yates et al, 2007; Baumann et al, 2015; Baumann and Smith, 2017). Many of these systems are influenced by land-based practices that amplify the flux of nutrients and organic matter to coastal waters and accelerate metabolic processes (Nixon, 1995; Caffrey, 2004). Sensitivities to short term exposures vary at the species level among decapod crustaceans, with juveniles of some species exhibiting significant lethargy and mortality over 24-h (Eriksson and Baden, 1997) and 2-h exposures (Gravinese, 2020) to DO levels of ∼25% air saturation

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call