Abstract

AbstractIt is known that graphs of doubling dimension O(loglogn) can be augmented to become navigable. We show that for doubling dimension ≫loglogn, an infinite family of graphs cannot be augmented to become navigable. Our proof uses a counting argument which enable us to consider any kind of augmentations. In particular we do not restrict our analysis to the case of symmetric distributions, nor to distributions for which the choice of the long range link at a node must be independent from the choices of long range links at other nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.