Abstract

AbstractSoftware simulation programs and virtual reality (VR) have become powerful tools for several educational purposes, and recently, they were used in a wide range of applications. In cases of inaccessibility to labs, workshops, or industries, as happened before in the coronavirus disease 2019 pandemic, these tools could be effectively integrated with practical lab experiments. In this study, a computational fluid dynamics (CFD) simulation and a VR module were utilized to simulate heat transfer by conduction through various experimental cases. The CFD simulation results were obtained using ANSYS/FLUENT software. Meantime, the experimental data were obtained by carrying out three experiments of heat conduction with different heat transfer rates through simple, composite, and different cross‐sectional area bars. At last, the experimental procedure and devices used were virtually constructed using SolidWorks software as three‐dimensional models, which were then extruded into VR and augmented reality models. It was found that the simulation results closely align with the experimental ones, and the temperature profile in both cases has the same behavior with small differences, which indicates the validity of the developed module to be used as a simulation of the actual experiments. In addition to improving knowledge of heat transfer principles, this combination of simulation and VR technology advances many Sustainable Development Goals (SDGs), including advancing quality education (SDG 4) and innovation in higher education (SDG 9). Additionally, this method assists in achieving the course learning objectives by mimicking real‐world lab experiments, guaranteeing that students graduate from the course with the required information and abilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call