Abstract

This paper describes an approach to synthesize a tightly adhered Ta3N5 nanotube array (NTA) photoanode with enhanced electron conductivity between the Ta3N5 layer and the substrate via a two-step anodization method. The obtained tightly adhered Ta3N5 NTA photoanode exhibits excellent photoelectrochemical properties with an optimal photocurrent up to 5.3 mA cm(-2) at 1.6 V vs. the reversible hydrogen electrode. This approach provides an effective strategy to address the adhesion issue of one dimensional semiconductor photoanodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.