Abstract

“Translational research” bridges clinical and basic research to formulate research studies based on clinical observations and to implement the clinical applications of basic research. Although basic and clinical scientists have long collaborated, translational research challenges investigators to move beyond the traditional training of both laboratory scientists and clinicians. In 2007, we—a clinical researcher (Kong) and a basic scientist (Segre)—initiated an interdisciplinary project to characterize the human skin microbiota associated with both common and rare skin disorders (Grice et al., 2008, 2009). We set out to better understand the cutaneous microbial landscape in healthy individuals and patients with atopic dermatitis through the use of genomic techniques. The project demanded an understanding of a combination of high-throughput sequencing technology and logistics of clinical research, with knowledge of the subtleties of dermatologic disorders. The requirements of rigorous translational research moved us both beyond the boundaries of our individual disciplines. The paradigm for a translational investigator has been the MD–PhD scientist with training in both patient care and laboratory research. This model results in over 300 MD–PhD graduates per year in the United States, 5.9% of whom enter residencies in dermatology. Of the recent MD–PhD scientists who completed dermatology residencies, 56% (39 of 70) remain in academia and provide a rich source of researchers in the field of dermatology (Brass et al., 2010). In the current state of research, there is an increasing need to build bridges between clinical and basic researchers to translate findings from bench to bedside and back again. Are we adequately preparing clinical researchers and basic scientists to bridge the translational research gap? If not, what skills do we need to learn and teach? Seven years ago, former National Institutes of Health (NIH) director Elias Zerhouni highlighted the complexities and roadblocks inherent to modern translational research. He implemented the NIH Roadmap with the goal of bringing individuals from critical disparate disciplines into translational research teams (Zerhouni, 2003). His model foreshadowed our path toward collaboration. We participated in the NIH Roadmap’s Human Microbiome Project with our study of patients with atopic dermatitis. MDs interested in laboratory-based research face competing demands imposed by patient-care responsibilities. PhDs interested in clinical research face competing demands for projects with shorter turnaround times to publish manuscripts and to compete for grants. MD–PhDs face both sets of competing demands. In addition, it is difficult for PhD scientists to identify ways to work with clinicians and for physicians without a laboratory to find a basic researcher to coinvestigate a clinical question. When we met, one of us (Segre) had training in genetics and basic cell biology, using only animal models and cell culture. The other (Kong) had training in dermatology and patient-oriented research. Although neither of us had prior experience with a translational research team jointly led by a clinical researcher and a basic scientist, our common enthusiasm propelled us into a high-risk research project that proved to be rewarding and fruitful. A critical issue was learning how to foster a collaboration that promoted translational research. We discuss here what enabled our collaboration and highlight features specific to our interactions as MD and PhD. Although we believe that much of our experience is relevant to all collaborations, certain features were specific to the changing landscape of translational research and the inherent differences in our training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call