Abstract

To analyze the challenge of large-scale integration of renewables during the next decades, we present a conceptual power system model that bridges the gap between long term investment allocation and short-term system operation decisions. It integrates dynamic investments in generation, transmission and storage capacities as well as short-term variability and spatial distribution of supply and demand in a single intertemporal optimization framework. Large-scale grid topology, power flow distributions and storage requirements are determined endogenously. Results obtained with a three region model application indicate that adequate and timely investments in transmission and storage capacities are of great importance. Delaying these investments, which are less costly than investments in generation capacities, leads to system-wide indirect effects, such as non-optimal siting of renewable generation capacities, decreasing generation shares of renewables, increasing residual emissions and hence higher overall costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.