Abstract

AbstractThe recent rapid development of deep-learning-based control strategies has made the reality gap a critical issue at the forefront of robotics, especially for legged robots. We propose a novel system identification framework, Progressive Bayesian Optimisation (ProBO), to bridge the reality gap by tuning simulation parameters. Since dynamic locomotion trajectories are usually harder to narrow the reality gap than their static counterpart, we train a Gaussian process model with the easier trajectory data set and make it a prior to start the learning process of a harder one. We implement ProBO on a quadruped robot to narrow the reality gaps of a set of bounding gaits at different speeds. Results show that our methods can outperform all other alternatives after training the initial gait.KeywordsReality gapSim2RealBayesian optimisationSimulator

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.