Abstract

Early detection and intervention in schizophrenia, improving prognosis, requires mechanism-based biomarkers that capture circuitry dysfunction, allowing optimized patient stratification, disease monitoring and treatment.Dr. Do's translational research, bridging basic neuroscience and clinical psychiatry, tackles an urgent need to develop effective treatments that target mechanisms underlying cognitive deficits, a critical dimension of schizophrenia, currently not well treated. By adopting a reverse translation of validated circuitry relevant human endpoints, her research brought new insights in mechanism-based biomarker guided treatment of patients in early stages of psychosis. She showed that oxidative stress/redox dysregulation, in reciprocal interaction with dopamine imbalance, NMDAR hypofunction, neuroinflammation and mitochondrial bioenergetic dysfunction, may represent a "hub" on which both genetic and environmental risk factors converge during neurodevelopment. This leads to impairments of structural and functional connectivity in microcircuits, involving impaired parvalbumin fast-spiking GABA neurons, and macrocircuits, impacting myelination of fiber tracts, at the basis of neural synchronization abnormalities, as well as sensory and cognitive deficits. These unique insights led to successful proof-of-concept clinical trials, targeting oxidative stress through antioxidant-based strategies in patients at various disease stages, paving the way for precision medicine in psychiatry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call