Abstract

R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.