Abstract
Environmental, social, and governance (ESG) criteria take a central role in fostering sustainable development in economies. This paper introduces a class of novel Natural Language Processing (NLP) models to assess corporate disclosures in the ESG subdomains. Using over 13.8 million texts from reports and news, specific E, S, and G models were pretrained. Additionally, three 2k datasets were developed to classify ESG-related texts. The models effectively explain variations in ESG ratings, showcasing a robust method for enhancing transparency and accuracy in evaluating corporate sustainability. This approach addresses the gap in precise, transparent ESG measurement, advancing sustainable development in economies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.