Abstract
Plant phenology plays a vital role in assessing climate change. To monitor this, individual plants are traditionally visited and observed by trained volunteers organized in national or international networks - in Germany, for example, by the German Weather Service, DWD. However, their number of observers is continuously decreasing. In this study, we explore the feasibility of using opportunistically captured plant observations, collected via the plant identification app Flora Incognita to determine the onset of flowering and, based on that, create interpolation maps comparable to those of the DWD. Therefore, the opportunistic observations of 17 species collected in 2020 and 2021 were assigned to "Flora Incognita stations" based on location and altitude in order to mimic the network of stations forming the data basis for the interpolation conducted by the DWD. From the distribution of observations, the percentile representing onset of flowering date was calculated using a parametric bootstrapping approach and then interpolated following the same process as applied by the DWD. Our results show that for frequently observed, herbaceous and conspicuous species, the patterns of onset of flowering were similar and comparable between both data sources. We argue that a prominent flowering stage is crucial for accurately determining the onset of flowering from opportunistic plant observations, and we discuss additional factors, such as species distribution, location bias and societal events contributing to the differences among species and phenology data. In conclusion, our study demonstrates that the phenological monitoring of certain species can benefit from incorporating opportunistic plant observations. Furthermore, we highlight the potential to expand the taxonomic range of monitored species for phenological stage assessment through opportunistic plant observation data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.