Abstract

We consider the Connectivity Augmentation Problem (CAP), a classical problem in the area of Survivable Network Design. It is about increasing the edge-connectivity of a graph by one unit in the cheapest possible way. More precisely, given a k-edge-connected graph G=(V,E) and a set of extra edges, the task is to find a minimum cardinality subset of extra edges whose addition to G makes the graph (k+1)-edge-connected. If k is odd, the problem is known to reduce to the Tree Augmentation Problem (TAP)—i.e., G is a spanning tree—for which significant progress has been achieved recently, leading to approximation factors below 1.5 (the currently best factor is 1.458). However, advances on TAP did not carry over to CAP so far. Indeed, only very recently, Byrka, Grandoni, and Ameli (STOC 2020) managed to obtain the first approximation factor below 2 for CAP by presenting a 1.91-approximation algorithm based on a method that is disjoint from recent advances for TAP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.