Abstract

Anadromous Pacific salmon are semelparous, and resource subsidies from spawning adults (marine-derived nutrients, or MDN) benefit juvenile salmonids rearing in freshwater. However, it remains unclear how MDN assimilation relates to spawner abundance within a watershed. To address this, we examined seasonal, watershed-scale patterns of MDN assimilation in rearing coho (Oncorhynchus kisutch) and Chinook (O. tshawytscha) salmon and compared it with spawner biomass and landscape features in a western Alaska watershed with contrasting structural complexity in two sub-drainages. Adult salmon biomass density was estimated from escapement and spawner distribution data, and MDN assimilation in juvenile salmon was estimated via stable isotopes. In the North River, MDN assimilation was lowest in early summer, prior to annual spawning migrations, increased after spawning, and peaked in late winter. In the more complex mainstem Unalakleet River, MDN assimilation was higher but varied minimally from summer through fall before increasing in late fall and winter. Summer MDN assimilation, prior to salmon spawning, was primarily a function of habitat complexity, where MDN was highest in sloughs and the more complex mainstem river. After salmon spawned, fall MDN assimilation was a function of adult pink and Chinook salmon biomass as well as MDN assimilation that occurred prior to spawning (that is, summer MDN), but unrelated to total summer biomass (all salmon species biomass combined). Thus, MDN assimilation by juvenile salmon in the fall was a function of species-specific adult spawner abundance but seasonal patterns of MDN assimilation were masked in complex habitat where summer MDN assimilation remained high.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call