Abstract

The real-world decision making often involves a comparison of uncertain systems or alternatives based on fuzzy evaluations. The concept of fuzzy entropy is quite useful in such situations. However, fuzzy entropy and the conventional probabilistic entropy differ in their semantics. This article critically examines the existing fuzzy entropy functions and redefine them to bring them closer to the probabilistic entropy. More specifically, new variants of the extant Luca and Termini, and Pal and Pal fuzzy entropy functions are proposed. The proposed fuzzy entropy functions are extended for the probabilistic-fuzzy uncertainty, commonly observed in the real world. A real application is included to demonstrate the usefulness of the proposed entropy functions in decision making applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.