Abstract

Symbolic reasoners generate plans which are often not exploiting the robot capabilities and are sensitive to runtime disturbances. This work proposes a scheduler as an interface between a discrete, symbolic plan and a motion control based on constraint optimization. Acting as a local reasoner, the scheduler valuates a set of predicates to decide when an action will be executed. Given a task specification which describes how the action should be realized, the scheduler configures the controller at runtime. A demonstration will be provided considering an “open drawer” scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.