Abstract

While the front of a fluid shock is a few mean-free-paths thick, the front of a collisionless shock can be orders of magnitude thinner. By bridging between a collisional and a collisionless formalism, we assess the transition between these two regimes. We consider non-relativistic, non-magnetized, planar shocks in electron–ion plasmas. In addition, our treatment of the collisionless regime is restricted to high-Mach-number electrostatic shocks. We find that the transition can be parameterized by the upstream plasma parameter $\varLambda$ which measures the coupling of the upstream medium. For $\varLambda \lesssim 1.12$ , the upstream is collisional, i.e. strongly coupled, and the strong shock front is about $\mathcal {M}_1 \lambda _{\mathrm {mfp},1}$ thick, where $\lambda _{\mathrm {mfp},1}$ and $\mathcal {M}_1$ are the upstream mean free path and Mach number, respectively. A transition occurs for $\varLambda \sim 1.12$ beyond which the front is $\sim \mathcal {M}_1\lambda _{\mathrm {mfp},1}\ln \varLambda /\varLambda$ thick for $\varLambda \gtrsim 1.12$ . Considering that $\varLambda$ can reach billions in astrophysical settings, this allows an understanding of how the front of a collisionless shock can be orders of magnitude smaller than the mean free path, and how physics transitions continuously between these two extremes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.