Abstract

Regressive Remaining Useful Life Prediction and Survival Analysis are two lines of research with similar goals but different origins; one from engineering and the other from survival study in clinical research. Although the two research paths share a common objective of predicting the time to an event, researchers from each path typically do not compare their methods with methods from the other direction. Given the mentioned gap, we propose a framework to compare methods from the two lines of research using run-to-failure datasets. Then by utilizing the proposed framework, we compare six models incorporating three widely recognized degradation models along with two learning algorithms. The first dataset used in this study is C-MAPSS which includes simulation data from aircraft turbofan engines. The second dataset is real-world data from streamed condition monitoring of turbocharger devices installed on a fleet of Volvo trucks.
 
 
 

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.