Abstract

Large language models (LLMs) show intriguing emergent behaviors, yet they receive around four or five orders of magnitude more language data than human children. What accounts for this vast difference in sample efficiency? Candidate explanations include children's pre-existing conceptual knowledge, their use of multimodal grounding, and the interactive, social nature of their input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.