Abstract

X-shaped radio galaxies (XRGs) produce misaligned X-shaped jet pairs and make up ≲10% of radio galaxies. XRGs are thought to emerge in galaxies featuring a binary supermassive black hole (SMBH), SMBH merger, or large-scale ambient medium asymmetry. We demonstrate that XRG morphology can naturally form without such special, preexisting conditions. Our 3D general-relativistic magnetohydrodynamic (GRMHD) simulation for the first time follows magnetized rotating gas from outside the SMBH sphere of influence of radius R B to the SMBH of gravitational radius R g at the largest scale separation, R B/R g = 103, to date. Initially, our axisymmetric system of constant-density hot gas contains a weak vertical magnetic field and rotates in the equatorial plane of a rapidly spinning SMBH. We seed the gas with small-scale 2% level pressure perturbations. Infalling gas forms an accretion disk, and the SMBH launches relativistically magnetized collimated jets reaching well outside R B. Under the pressure of the infalling gas, the jets intermittently turn on and off, erratically wobble, and inflate pairs of cavities in different directions, resembling an X-shaped jet morphology. Synthetic X-ray images reveal multiple pairs of jet-powered shocks and cavities. Large-scale magnetic flux accumulates on the SMBH, becomes dynamically important, and leads to a magnetically arrested disk state. The SMBH accretes at 2% of the Bondi rate ( for M87*) and launches twin jets at η = 150% efficiency. These jets are powerful enough (P jets ≃ 2 × 1044 erg s−1) to escape along the SMBH spin axis and end the short-lived intermittent jet state, whose transient nature can account for the rarity of XRGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call