Abstract

Efficient utilization of biomass is challenging due to the complexity of the feedstock at molecular, particle, and reactor scales. Direct coupling of particle scale model and reactor scale simulation is computationally infeasible. In this research, the results from a particle resolved simulation were used to calibrate the heat transfer and reaction kinetics of particles. A hybrid drag model was used to consider the different fluidization properties of sands and biomass particles. The computation cost was reduced using a coarse-grained Discrete Element Method (DEM). The simulated conversion rate, char yield, tar yield, and pyrolysis gas yield compare well with experiment. The residence time and axial distributions of biomass were also analyzed. This novel multi-scale method provides an efficient and accurate tool for the modeling of biomass pyrolysis reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.