Abstract

Herein, a novel IR NLO oxytelluride Sr3Ge2O4Te3 was successfully designed and synthesized through a "partial O-to-Te substitution" strategy. Compared with the parent oxide, Sr3Ge2O4Te3 not only successfully achieves a phase-matchability transition (from NPM to PM), but also greatly improves the linear and NLO performances, including a wide band gap (2.26 eV), strong SHG response (1.3 × AgGaSe2) and large optical anisotropy (Δn = 0.152@2090 nm). The analyses of the structure-property relationship and SHG-density indicate that the bridging oxygen in the [O3Ge-O-GeTe3] prism unit plays the most important role in the multiplication SHG effect. This work provides some insights into the design and exploration of novel IR NLO materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call