Abstract

FeCrAl alloys are candidates for accident tolerant fuel cladding of light water reactors. In this work, a microstructure- and temperature-dependent crystal plasticity model is employed to bridge microscale to macroscale mechanical property measurements of FeCrAl alloys. With the visco-plastic self-consistent (VPSC) polycrystal plasticity framework, a mechanism-based single crystal plasticity (MSCP) model adopts the Arrhenius type rate equation to describe the dependence of the critical resolved shear stress for dislocation slips on their temperature-dependent intrinsic frictional resistance and the microstructure-dependent irradiation hardening. The intrinsic frictional resistance associated with {110}<111> and {112}<111> slip systems were measured by in-situ micromechanical testing on unirradiated/irradiated samples at 25-500 °C. The irradiation hardening is estimated by the Bacon-Kocks-Scattergood (BKS) model with density and size of radiation-induced defects measured from microstructural characterization. Several features associated with thermo-mechanical behavior of unirradiated/irradiated polycrystalline FeCrAl alloys are captured. High density of deformation-induced dislocations and radiation-induced defects results in obvious hardening at room temperature, which is weakened at high temperature, and facilitates damage evolution during deformation. Moreover, both high temperature and radiation-induced defects, which facilitate dislocation multiplication, trigger large hardening rate. The proposed method together with application of accelerator-based ion irradiation technique is a surrogate approach to simulate neutron damage, improving the efficiency associated with evaluation of mechanical properties of FeCrAl alloys exposed to temperature, stress and radiation conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call