Abstract

Several issues connected with bridgingmethods for atomistic-to-continuum (AtC) coupling are examined. Different coupling approaches using various energy blending models are studied as well as the influence that model parameters, blending functions, and grids have on simulation results. We use the Lagrange multiplier method for enforcing constraints on the atomistic and continuum displacements in the bridge region. We also show that continuum models are not appropriate for dealing with problems with singular loads, whereas AtC bridging methods yield correct results, thus justifying the need for a multiscale method. We investigate models that involve multiple-neighbor interactions in the atomistic region, particularly focusing on a comparison of several approaches for dealing with Dirichlet boundary conditions. AMS subject classifications: 74B05, 74G65, 74S30, 74S05, 70-08, 70C20 PACS: 46.15.-x, 02.70.Ns, 02.70.-c, 46.25.-y, 02.70.Dh

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.