Abstract

LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse’s habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse’s preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.

Highlights

  • Forest ecosystems and the biodiversity they hold are facing increasing pressures due to natural factors and management practices that alter and, in many cases, simplify habitat heterogeneity [1]

  • Given that the majority of published literature using Light Detection and Ranging (LiDAR) investigate bird responses to habitat structure [9, 10], this study aimed to narrow this gap by providing new insights on small mammals-habitat structure relationships through the combined use of field and LiDAR derived environmental variables in a Mediterranean high mountain pine forest

  • Wood mouse was influenced by forest vegetation structure and elevation

Read more

Summary

Introduction

Forest ecosystems and the biodiversity they hold are facing increasing pressures due to natural factors and management practices that alter and, in many cases, simplify habitat heterogeneity [1]. These a priori complex habitats are mainly determined by vegetation structure, which is widely recognized as being one of the most important factors in habitat selection for numerous taxonomic groups [2]. LiDAR technology has brought back with renewed strength the classical study of MacArthur and MacArthur [3], while it has contributed to revitalize the “habitat heterogeneity hypothesis” (structurally complex habitats can provide more niches and increase species diversity; [2]) by providing accurate and objective measures of vegetation architecture to model wildlife-habitat structure relationships. Canopy cover and understory vegetation derived from LiDAR data have been shown to influence hunting or foraging decisions and habitat use under contrasting weather conditions in some terrestrial mammals such as ungulates or meso-carnivores [9, 13,14,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call