Abstract
Main observation and conclusionThe on‐demand building copolymer structures, from sequence to architecture, is crucial in understanding the relation between polymer structure and property, meanwhile motivating the innovation of polymer hierarchy. However, the challenge is conspicuous for complicated polymer structures from inherently intricate polymerization. In this work, copolymers with tailored grafting density and distributions were achieved using successive latent monomer and grafting‐from strategies. The hydroxyl group functionalized furan/maleimide adduct (FMOH) was selected as the latent monomer for RAFT polymerization of an array of copolymers with tailored localization of hydroxyl group along the main chain. The hydroxyl group further initiated the ring opening polymerization (ROP) of L‐lactide or ε‐caprolactone, resulting in a library of multicomponent copolymers via grafting‐from strategy. The initiating efficiency reached to ~100% with variable molecular weight (21300—58600 Da) and narrow distributions (ÐM < 1.25), indicating that such graft copolymers possessed controlled density and distribution of side chains as its linear template. The investigation on thermal properties of the well‐defined graft copolymers implied that the precise tailoring over copolymer structures at the molecule level could lead to tunable chemical/physical properties. This work bridged polymer from sequence to architecture, unveiled a new method in creating graft copolymers with programmable structures and provided the insight into the structure/property relationship.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.