Abstract

Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

Highlights

  • Aquatic ecologists and biogeochemists are well aware of the importance of biologically mediated ecosystem functions in driving biogeochemical cycling and its feedback (Figure 1)

  • ◦ The molecular diversity of non-living organic matter is functionally linked to the diversity of organisms

  • The future goal is to use the theory of ES as a common currency to connect food web interactions, ecosystem metabolism, and biogeochemistry as they are inherently linked by the transfer of C, N, and P through biotic and abiotic nutrient transformations and fluxes in order to improve our understanding of aquatic ecosystem functioning

Read more

Summary

Introduction

Aquatic ecologists and biogeochemists are well aware of the importance of biologically mediated ecosystem functions in driving biogeochemical cycling and its feedback (Figure 1). 3. Changing ecosystem metabolism will alter the chemical diversity of the non-living environment. ◦ The alteration of metabolic processes in aquatic ecosystems affects the transformation and fluxes of inorganic and organic matter.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call