Abstract

The inherent electron localized heptazine structure of carbon nitride (CN) derived from intrinsic tertiary N (N3C) bridging structure makes the photogenerated charge separation rather difficult, which severely limits photocatalytic CO2 activity of CN. Therefore, modulation of N3C bridging structure of CN is highly desirable to enhance the charge separation efficiency of CN. Herein, we reported a novel thiophene-bridged CN (BTCN) with intramolecular donor-π-acceptor (D-π-A) systems synthesized by nucleophilic substitution and Schiff base reaction to improve the photogenerated charge separation efficiency. The experimental and density functional theory (DFT) results indicate that this BTCN exhibits a high π-electron delocalization range and enhanced photogenerated charge transfer efficiency, which mainly account for the enhanced photocatalytic activity. The optimal BTCN photocatalyst exhibits enhanced charge separation efficiency and higher photocatalytic CO2 reduction activity with a CO yield of 23.02 μmol·g−1·h−1, which was higher than those of CN and edge-modified CN (ETCN) counterpart. This work highlights the importance of regulation of π-electron delocalization for the design of highly active CN photocatalysts via the rational substitution of N3C bridging structure with π-spacer molecular linkages for photocatalytic CO2 reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call