Abstract

Fault Diagnosis and Health Monitoring (FD-HM) for modern control systems have been an active area of research over the last few years. Model-based FD-HM computational approaches have been extensively developed to detect and locate faults by considering logical or mathematical description of the monitored process. However, because of parametric, measurement and model uncertainties, applicable approaches that endeavor to locate faults with great accuracy are likely to give false alarms. Recently, many research works have been conducted in order to tackle this issue by making a tradeoff between accuracy and robustness during the fault detection phase. Due to the recent advances in sensor technology, computational capabilities and dedicated software/hardware interfaces, data-driven FD-HM approaches have demonstrated that highly accurate fault detection is possible when the system monitoring data for nominal and degraded conditions are available. Therefore, it seems that more than one approach is usually required for developing a complete robust fault detection and diagnosis tool. In this paper, the features of different model-based and data-driven approaches are investigated separately as well as the existing works that attempted to integrate both of them. In this latter context, there have been only few works published in the literature and hence reviewing and discussing them is strongly motivated by providing a good reference for those interested in developing hybrid approaches for FD-HM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call