Abstract

ConspectusProspective applications involving the electrification of industrial chemical processes and electrical energy to chemical fuels interconversion as part of the energy transition to renewable energy sources have led to an increasing need for highly tailored nanostructures immobilized on electrode surfaces. Control of surface facet structure across material compositions is of particular importance for ensuring performance in such applications. Colloidal methods for producing shaped nanoparticles in solution are abundant, particularly for noble metals. However, significant technical challenges remain with respect to rationally designing syntheses for the novel compositions and morphologies required to sustainably enable the above technological advances as well as in developing methods for uniformly and reproducibly dispersing colloidally synthesized nanostructures on electrode surfaces. The direct synthesis of nanoparticles on electrodes using chemical reduction approaches remains challenging, though recent advances have been made for certain materials and structures. Electrochemical nanoparticle synthesis─where an applied current or potential instead of a chemical reducing agent drives the redox chemistry of nanoparticle growth─is poised to play an important role in advancing the fabrication of nanostructured electrodes. Specifically, this Account focuses on the colloidal-inspired design of electrochemical syntheses and the interplay between colloidal and electrochemical approaches in terms of understanding the fundamental chemical reaction mechanisms of nanoparticle growth. An initial discussion of the development of electrochemical particle syntheses that incorporate colloidal synthetic tools highlights the promising emergent capabilities that result from blending these two approaches. Furthermore, it demonstrates how existing colloidal syntheses can be directly translated to electrochemical growth on a conductive surface using real-time electrochemical measurements of the chemistry of the growth solution. Measuring the open circuit potential of a colloidal synthesis over time and then replicating that measured potential during electrochemical deposition leads to the formation of the same nanoparticle shape. These in situ open circuit and chronopotentiometric measurements also give fundamental insight about the changing chemical environment during particle growth. We highlight how these time-resolved electrochemical measurements, as well as correlated spectroelectrochemical monitoring of particle formation kinetics, enable the extraction of information regarding mechanisms of particle formation that is difficult to obtain using other approaches. This information can be translated back into colloidal synthesis design via a directed, intentional approach to synthetic development. We additionally explore the added flexibility of synthetic design for methods involving electrochemically driven reduction as compared to the use of chemical reducing agents. The Account concludes with a brief perspective on potential future directions in both fundamental studies and synthetic development enabled by this emerging integrated electrochemical approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call