Abstract

Throughout biology, specifying cellular events at the correct location and time is necessary for ensuring proper function. The formation of robust microtubule organizing centers (MTOCs) in mitosis is one such event that must be restricted in space to centrosomes to prevent ectopic MTOC formation elsewhere in the cell, a situation that can result in multipolar spindle formation and aneuploidy. The process of reaching maximum centrosome MTOC activity in late G2, known as centrosome maturation, ensures accurate timing of nuclear envelope breakdown and proper chromosome attachment. Although centrosome maturation has been recognized for over a century, the spatial and temporal regulatory mechanisms that direct MTOC activation are poorly understood. Here, we review Sas-4/CPAP, Asterless/Cep152, Spd-2/Cep192, and PLP/Pericentrin, a group of proteins we refer to as ‘bridge’ proteins that reside at the surface of centrioles, perfectly positioned to serve as the gatekeepers of proper centrosome maturation at the perfect place and time.

Highlights

  • Centrosomes undergo a dramatic transformation in G2, known as centrosome maturation, where additional pericentriolar material (PCM) is recruited

  • This maturation facilitates an increase in MT nucleation and organization in preparation for mitosis

  • The region of the centrosome just beyond the centriole wall is a zone critical for centrosome maturation: we term this region as the ‘bridge zone’

Read more

Summary

Introduction

Centrosomes undergo a dramatic transformation in G2, known as centrosome maturation, where additional PCM is recruited.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.